A Survey of Linear Extremal Problems in Analytic Function Spaces

نویسندگان

  • Catherine Bénéteau
  • Dmitry Khavinson
  • D. KHAVINSON
چکیده

The purpose of this survey paper is to recall the major benchmarks of the theory of linear extremal problems in Hardy spaces and to outline the current status and open problems remaining in Bergman spaces. We focus on the model extremal problem of maximizing the norm of the linear functional associated with integration against a polynomial of finite degree, and discuss known solutions of particular cases of that problem. We examine duality and its application in both Hardy and Bergman spaces. Finally, we discuss some recent progress on the finiteness of the Blaschke product of the extremal solution in Bergman spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey of Certain Extremal Problems for Non-vanishing Analytic Functions

This paper surveys a large class of nonlinear extremal problems in Hardy and Bergman spaces. We discuss the general approach to such problems in Hardy spaces developed by S. Ya. Khavinson in the 1960s, but not well known in the West. We also discuss the major difficulties distinguishing the Bergman space setting and formulate some open problems.

متن کامل

Orthogonal Polynomials and Quadratic Extremal Problems

The purpose of this paper is to analyse a class of quadratic extremal problems defined on various Hilbert spaces of analytic functions, thereby generalizing an extremal problem on the Dirichlet space which was solved by S.D. Fisher. Each extremal problem considered here is shown to be connected with a system of orthogonal polynomials. The orthogonal polynomials then determine properties of the ...

متن کامل

An Extremal Effective Survey about Extremal Effective Cycles in Moduli Spaces of Curves

We survey recent developments and open problems about extremal effective divisors and higher codimension cycles in moduli spaces

متن کامل

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

Extremal Mappings of Finite Distortion

The theory of mappings of nite distortion has arisen out of a need to extend the ideas and applications of the classical theory of quasiconformal mappings to the degenerate elliptic setting. There one nds concrete applications in materials science, particularly non-linear elasticity and critical phase phenomena, and the calculus of variations. In this paper we re ne and extend these connections...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012